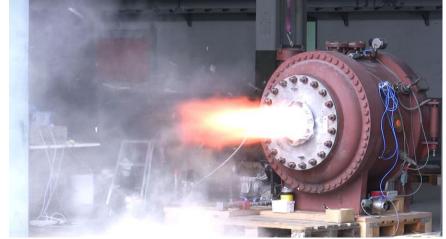


Das Glas ist immer HALBVOLL – Lagerung von restentleerten Gebinden und deren unterschätztes Gefahrenpotential

Referent: Dipl.-Ing. Daniel Vieth

Projektbeteiligte: Dipl.-Ing. (FH) Dirk Saschenbrecker, Dipl. Chem. Joachim Wandt, M. Eng.

E-Mail: <u>daniel.vieth@inburex.com</u>


Datum: 28. November 2024

INBUREX Consulting GmbH

- > Beratungsfirma für Explosionsschutz und Prozesssicherheit
- ➤ Gegründet 1990
- Inhabergeführt & unabhängig
- > 6 Fachbereich
 - Explosionsschutz
- Prozesssicherheit
- Brandschutz
- Störfallvorsorge
- Forschungs- & Prüflabor
- Ausbildung & Training
- > International tätig
- > 30 Ingenieure & Naturwissenschaftler

Praxisbeispiel – Gefahrstofflager vs. Spülküche

Gefahrstofflager für restentleerte Gebinde:

- Entzündbare Flüssigkeiten nicht auszuschließen
- Flexibilität der Nutzung
- Anforderungen der TRGS 510 zum Brand- & Explosionsschutz
 - Restentleerte Gebinde wie volle zu betrachten
 - Schutzabstände/-streifen zu umliegenden Gebäuden
 - Fluchtwege Mitarbeiter
 - Angriffsweg der Feuerwehr
 - Zoneneinteilung, Kennzeichnung
 - Vermeidung wirksamer Zündquellen
- ➤ Investitions- & Instandhaltungskosten

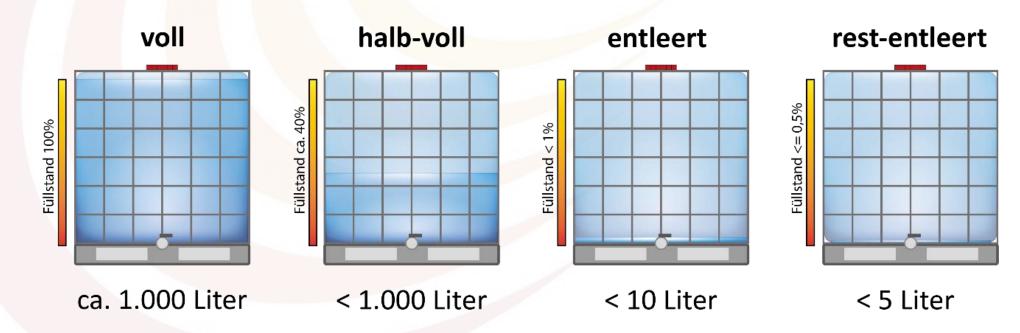
<u>Investition in eine Spülküche:</u>

- Vollständig gespülte Behälter verlieren Großteil ihres Gefährdungspotential
- ➤ KEINE Investition in Infrastruktur für Brand- und Explosionsschutz erforderlich

Unumstrittenes Gefahrenpotential bei vollen Behältern

- > Volle Behälter Gefahrenpotential ersichtlich:
 - Reine Brandlast
 - Anstich oder Absturz → totales Behälterversagen
- > Flüssigkeitsfreisetzung aus 1.000L Gebinde:
 - Bildung einer Flüssigkeitslache von 200 m²
 - Bildung explosionsfähiger Dampf/Luft-Atmosphäre in geschlossenen Räumen
 - Lachenbrand, Unterfeuerung
- > TRGS 510 Maßnahmen zum Brand- und Explosionsschutz:
 - Spiegeln anerkannten Stand der Technik wider
 - Betreiberseitige Umsetzung ohne Diskussion

Unterschätztes Gefahrenpotential restentleerter Gebinden


- ➤ Industrielle Praxis: stiefmütterliche Betrachtung restentleerter Gebinde
- Vermeintlich nicht gefahrdrohende Menge
- Unterschätztes Gefahrenpotential:
 - Gefahr wird nicht erkannt oder nicht richtig bewertet
 - Schlichtweg ignoriert
- Unterschätzung führt zur Hinterfragung der Maßnahmen zum Brand- und Explosionsschutz nach TRGS 510
 - Restentleerte Gebinde sind wie volle Gebinde zu betrachten
 - Maßnahmen zu aufwändig, übertrieben und kostenintensiv

Doch was sind restentleerte Gebinde?!

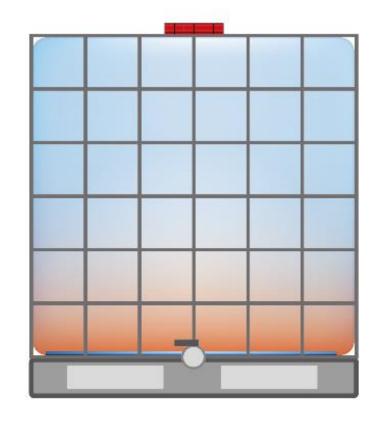
- ➤ TRGS 510: Bei der Lagerung von restentleerten Behältern gelten Absatz 2 und 3 sinngemäß, wobei die anzusetzende Lagermenge 0,5% des Fassungsvermögens der Behälter beträgt, da vorausgesetzt wird, dass die Restanhaftungen/-inhalte dieser Behälter weniger als 0,5% ihres Fassungsvermögens betragen.
- > Bsp. 1.000L-IBC: Restinhalt ≤ 5L als restentleert anzusehen

Gefährdungspotential 5L entzündbare Flüssigkeit

> Freiwerdende Verbrennungswärme von 5L Aceton & Ethanol

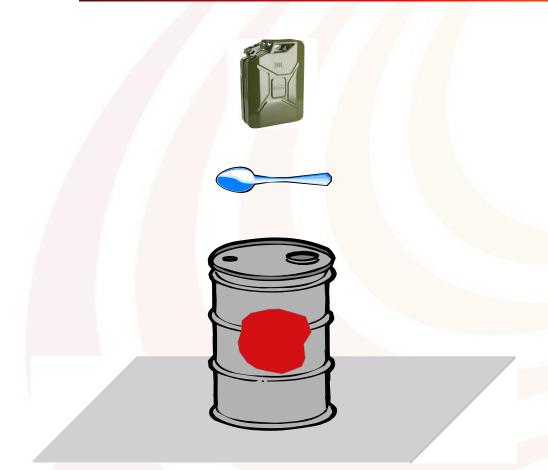
Stoff	Heizwert H _u [kJ/kg]	Verbrennungswärme E [kJ]
Aceton	28.440	111.500
Ethanol	27.000	106.500

- > Steakzubereitung:
 - 15 min, 2 Brenner Leistung je 5 kW
 - Gesamtenergieverbrauch: 9.000 kJ
- Mit freiwerdenden Verbrennungswärme könnten ca. 12 Steaks gegrillt werden



Gefahrdrohende Menge nach TRGS 721

- > Häufiges Argument: keine gefahrdrohende Menge
- Gängige Meinung: 10L zusammenhänge explosionsfähige Atmosphäre unabhängig von Raumgröße
- ➤ TRGS 721: Räume < 100 m³ gefahrdrohende Menge explosionsfähiger Atmosphäre 1/10.000 des Rauminhaltes


> IBC: 0,1L Dampf gilt als gefahrdrohend

Unterfeuerung bewirkt erhöhten Verdampfungsmassenstrom

Beispiel Dampf/Luft-Atmosphäre

ca. 7 ml
Ethanol

verdampfen
ca. 1,6 l
Ethanol-Dampf

vermischen

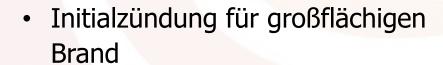
ca. 200 I Ethanol/ Luft-Gemisch an der UEG

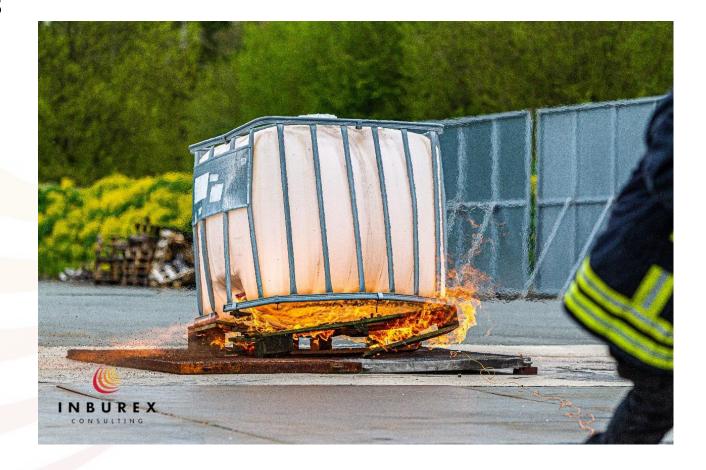
Ein kleine Menge von nur 1 Teelöffel Ethanol füllt ein 200 I-Fass vollständig mit explosionsfähiger Atmosphäre!

Versuchsreihe zur Unterfeuerung von IBCs

- > Versuchsreihe zur Unterfeuerung von IBCs sollen enorme Gefährdung abbilden
- Unterfeuerung jeweils mit Isopropanol

Versuchsbezeichnung	Versuchsbedingungen
Kunststoff-IBC	Leckage am Auslassstutzen 5L Aceton T _U = 20°C
Kunststoff-IBC	Vollständig geschlossener Behälter 5L Isopropanol T _U = 20°C
Metall-IBC	Vollständig geschlossener Behälter 1L Aceton T _U =23°C


Gefahren durch rest-entleerte, ungereinigte Gebinde entzündlicher Flüssigkeiten



Kunststoff-IBC mit 5L Aceton

- Unberechenbares & schlagartiges Abblasverhalten
- > 8 Sekunden bis zum Abblasen
 - Weglaufen fast unmöglich
 - Schwerste bis tödliche Verbrennungen bei Kontakt mit Flamme

> Ca. 8 m Flammenstrahl

Gefahren durch rest-entleerte, ungereinigte Gebinde entzündlicher Flüssigkeiten

Gefahren durch rest-entleerte, ungereinigte Gebinde entzündlicher Flüssigkeiten

Versuchsreihe zur Unterfeuerung von IBCs – QR-Codes

Unterfeuerung eines IBC mit 5l Aceton

Video-Link

Unterfeuerung eines IBC mit 51 Iso-Propanol

Video-Link

Unterfeuerung eines IBC mit

1 Aceton

Video-Link

^[1] Saschenbrecker, D.; Vieth, D.; Wandt, J. (2021): Das Glas ist immer HALBVOLL: Gefahrstoffhandling, In: Der Brandschutzbeauftragte – Das Praxismagazin zum organisatorischen Brandschutz im Betrieb, S. 34 – 38

- Berechtigung, dass restentleerte Gebinde nach TRGS 510 wie volle zu betrachten sind
 - Umsetzung Maßnahmen zum Brand- & Explosionsschutz unabdingbar
- > Selbst Mengen < 5L können gefahrdrohend sein
- Unberechenbares, plötzliches Abblasverhalten IBCs mit Flammenstrahlen bis 8 m Länge
 - Flammenstrahl führt zu schweren bis hin zu tödlichen Verletzungen (Mitarbeitergefährdung)
- ➤ Bei Leckagen, sehr schnelles Abblasen des IBC innerhalb von 8 Sekunden
- > Rückstoßkräfte ausreichend, um IBC ca. 0,5 m zu verschieben
 - Gebindeabsturz bei gestapelten IBC → erweitertes Gefährdungspotential

Fazit

Das Glas ist immer HALBVOLL

